

CIBC 2019

DEMYSTIFYING Artificial Intelligence in Women's Imaging

Marcia C. Javitt, MD FACR Director of Medical Imaging Rambam Healthcare Campus, Haifa, Israel

Chicago International Breast Course The Westin Chicago River North November 1-3, 2019

Learning Objectives

- Describe WI unique culture of care→ predicts successful adoption of AI
- 2) Outline opportunities & challenges in AI
- 3) Consider: Who owns data? Ethical questions?
- 4) What are cybersecurity vulnerabilitie ?
- 5) *The Holy Grail*: Integrated Radiomic models to provide personalized risk assessment

© 2019 Marcia C. Javitt, M.D

Is AI in everyday Life?

- smartphones
- self-driving cars
- drones
- video games
- music & media streaming
- banking
- security
- traffic

Artificial Intelligence

- 'Artificial Intelligence' 1956 Dartmouth Asst Prof John McCarthy:
- AI is "the science and engineering of making intelligent machines, especially intelligent computer programs."

© 2019 Marcia C. Javitt, M.D

Artifi ial Intelligence

- AI: machin, r .torm cognitive functions like humans such as perception, reasoning, learning, problem solving
- AI combines big data with fast, iterative processing and intelligent algorithms
- Software/machines/Bots learn automatically from patterns or features in the data
 WMMmuc Joint ND

Machine Learning: Can computers learn without explicit rules?

- 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed."
- ML algorithms learn and predict !!! – Unlike rules-based algorithms
 - Improve and learn from exposure to new data
 - Data is used for training, testing, and validation

Types of Machine Learning

- 1) Supervised Learning
 - Data labels are given to the algorithm in training phase
- 2) Unsupervised Learning No data labels
 - Data is grouped or clustered

3) Reinforcement

- Computer gets feedback from consequences without being taught
- Finds patterns, filters signals

© 2019 Marcia C. Javitt, M.D

Chicago International Breast Course The Westin Chicago River North November 1-3, 2019

Performance Metrics for AI/ML/DL?

- "Validation" = model development & optimization
- "Testing" = external evaluation of AI performance
- Confirm clinical utility
 - Sensitivity, Specificity, Disease Prevalence, Costs
- ROC Curve

DL: type of ML

- Calibration Plot (fit: predicted vs re probabilities)
- External Data, Prospective
- Outcomes Data & Clinical Trials

Processes many data resources

Requires less data preprocessing by humans

known as "neurons" \rightarrow form a neural network -CNNs combine info from voxels spatially close together

May be more accurate than traditional MLInterconnected layers of software-based calculators

Learns complex patterns in large datasetsUse what is learned to process new data

REF: Park SH, Han K, Methodologie guide f atuating cal performance and t of artificial intelligence technology for medical diagn- kadiology 2. 01-809, 2018.

Deep Learning

AI or ML?

- · CAD (computer aided diagnosis) is a form of AI
- CAD has rule-based algorithms
- CAD is not ML!

ML improves with experience.

© 2019 Marcia C. Javitt, M.D

VALUE OF ML: identify, flag, triage

Neu al Networks

- NN: interce. v ded units (like neurons)
 processes info by responding to external inputs
 - relays info between units
 - multiple passes @ data finds connections & meaning
 - -Kernels are filter elements
- Neurons are interconnected
 output of one neuron = input for another
- Hidden layers allow deep neural networks to learn features of the data in a 'feature hierarchy'

• ML can

© 2019 Marcia C. Javitt, M.D

- offer advice to radiologist
- speed up workflow/acquisition time/time critical actions
- improve image quality
- improve diagnostic accuracy
- segment abnormal from normal tissue
- uncover hidden information, patterns
- generate 'synthetic' images from current images
- predict continuous variables (e.g.-bone age from hand XR)

CIBC 2019 What's the AI BIG DEAL?

- · Automation of repetitive high-volume tasks
- Improvement of performance and accuracy
- · Computer leaning and adaptive intelligence
- Uncover/analyze deep data and hidden information
- Data has the information (Is Data IP?)

© 2019 Marcia C. Javitt, M.D

Chicago International Breast Course The Westin Chicago River North November 1-3, 2019

What changed all of a sudden?

- New algorithms, More IT computing power
- GPU technology stores 100s of teraflops of data
 1 TFLOP = 10¹² (trillion) floating point operations/second
- Big Data more and more available
- Improved cloud-based services
- · Leverage data banks to unlock valu

5555555555555555

© 2019 Marcia C. Javitt, M.D

BIG COMPUTING, BIG DATA, BIG CHANGES

• Now: Storage EMR, PACS, RIS, CODING, BILLING, IMAGING, PATH, LABS, etc.

• Next: Real time, Interoperable, Multi Source Integrated Healthcare Enterprise (PACS/RIS Workflow, Dashboard, DICOM, HL7 exchan e, integration, sharing, and retrieval of electronic health information.

© 2019 Marcia C. Javitt, M.D

Lack of Standards for

- De-ide ification of images and reports
- Structured reporting with common data elements
- Image quality
- Combining data-different sources 📝 🧬
- Extract & Label EMR/Radiology Report data
- Data repositories minimizing bias
- Cybersecurity
- Image enhancement & reconstruction → no training datasets to teach machines
- Patient engagement/trust??? with data sharing

© 2019 Marcia C. Javitt, M.D

FAKE FINDINGS - FAKE NEWS?

- Mirsky et al (Ben Gurion Univ Cyber Security Research Center)
 - Malware altered lung CTs adds or subtracts nodules
 Fooled radiologists 99% of the time
 - Fooled again 60% after told about malware alterations
- Imaging data typically not digitally signed/protected
- Need Encryption and Updated Infrastructure (\$\$\$\$)
- arXiv @ Cornell- NO PEER REVIEW

CIBC 2019

CYBERATTACKS: insert/remove findings

ASSASSINS Everywhere! 🔂

- Generative Adversarial Network (GAN) on MMGs
 - 680 images w/ and w/o lesions
 - 302 cancers and 590 controls = test set
 3 rads read altered & original images: both hi and low res
- GANs: DL algorithms w/2 opposed neural networks
 1 GAN changes images; 1 GAN finds real vs altered images
 - @ low res, rads failed to id altered images
 - @ hi res, rads could id altered images but found fewer cancers (AUC 0.37 versus 0.80)

REF: Anton S. Becker, et al, Injecting and removing suspicious features in breast imaging with CycleGAN: A pilot study of automated adversarial attacks using neural networks on small images. European Journal of Radiology, 2019, in press.

Chicago International Breast Course The Westin Chicago River North November 1-3, 2019

Culture of Care in WI

- Large datasets →training
- Tumor Registries
- Standards (MQSA since 1994)
- Digital (PACS)
- BI-RADS: Risk stratification ~ pat rn recognition
- Computer aided detection (CAD)

© 2017 Marcia C. Javitt, M.D

Impact of AI on WI

- Increasing Use of DBT for screening
- Increasing # of images per screening study
- Increasing interpretation time
- · Increasing fatigue and imaging complexity

READING TIME PERFORMANCE

© 2017 Marcia C. Javitt, M.D

°OWER ⅔ POTENTIAL OF AI IN WI

1) IMPROVE WORKFLOW:

Remove Normals from 223,109 MMGs (2009 – 2016)→ decrease workload 19.3%

	No Algorithm	With Algorithm
Sensitivity	90,6%	90.1%
Specificity	93.5%	94.2%

Yale A, Schuster T, Miles R, Barzilay R, Lehman C, A Deep Learning Model to Triage Screening Mammograms: A Simulation Study, Radiology, 2019 Aug 6:182908 doi: 10.1148

© 2019 Marcia C. Javitt, M.D

2) INC LASE EF. CIENCY

250 2L 'MGs comp ing AI vs traditional CAD: 70% few、 false + arks per image 52% no mark ' AI vs 17% no marks by CAD

Time savings ~ 64%

1 USSIDIC 1070 Increase in Wilvios read					
	Traditional CAD	AI Based CAD			
Sensitivity	90%	98%			
False + marks per image	0.63	0.14			
BI-RADS 0 cases (no marks)	17%	52%			
Watanabe AT, Mayo RC, Chang Sen LO, Kapoor M, Leong J, Artificial intelligence software to improve memanogr workflow. Abstract 9B-0096 14:17, ECR 2019 Book of Abstracts, European Society of Radiology (ESR) European of Radiology 2019 (Vienna, Austria, February 27 – March 3, 2019).					
	ECR 2019 Book of Abstracts, European				

3) IMPROVE PERFORMANCE

Use of CAD (AI) with DBT:

reading time 55.9% subspecialists, 48.5% generalists

diagnostic performance 24 readers, 260 DBT cases 13 breast imagers, 11 generalists

CASE LEVEL AVERAGE	AI	W/O AI	NOTES
AUC	0.852	0.795	22/24 readers had > AUC w/AI
Sensitivity	85%	77%	Avg Sens increase 0.80
Specificity	69.6%	62.7%	Avg Spec increase of 0.069
Mean Read Time	30.4 secs (decrease 52.7%)	64.1 sec	Avg improved 52.7% w/AI

Count EF, Toledano XV, Perlassamy S, et al., Improving Accuracy and Efficiency with Concurrent Use of Artificial Intelligence for Digital Breast Tomosynthesis. Radiology: Artificial Intelligence 2019 1:4 © 2019 Marcia C. Javin MD

CIBC 2019

4) <u>IMPROVE DBT PERFORMANCE</u>

<u>IN DENSE BREAST TISSUE</u>

24 readers of 260 DBT studies included 65 cancers and 65 benign lesions AI improved AUC DENSE AND NONDENSE, shortened read time, improved Sensitivity, & Specificity

	W/O AI	W/ AI
AUC DENSE	0.81	0.87
AUC NON DENSE	0.78	0.84
READ TIME secs DENSE	65.8	28
READ TIME secs NONDENSE	62.5	32.8
SENSITIVITY DENSE	77%	84%
SENSITIVITY NONDENSE	77%	86%
SPECIFICITY DENSE	66%	75%
SPECIFICITY NONDENSE	60%	64%

(amit) F. Comant, MD, Concurrent Use of Deep Learning Based Artificial Intelligence Improves Detection of Breast Cancer and Beeding Time volve Digital Breast Amonyphiles in Numen with Dense and Nun-Dense Breast, 2019 SBUACR Breast Imaging ymposium, April 4, 2019, Holdy wood, FL. 2009 Marciae Clawn M. D

Chicago International Breast Course The Westin Chicago River North November 1-3, 2019

5) <u>IMPROVE DIAGNOSTIC ACCURACY:</u> <u>DM DREAM CHALLENGE- 2017</u>

Digital Mammography for Reverse Engineering Assessments and Methods

- · Sage bionetworks with NCI funded BCSC registry
- 640,000 de-identified DM images with 1,114 images of breast cancer (0.34%) in 86,000 ♀♀
- Competition for improved accuracy using ML

 Sens ~87% (Radiologists Sens ~88%)
 Spec ~82% (similar to Radiologists in CCS data)
- Ann Arbor & Therapixel shared firs place using DL
- Now in collaboration phase share as ree code, annotated data, devely ne AI-CAD to 15 2009Marca Law MD

AUTOMATION USING AI

- · Image segmentation
- Lesion detection
- Measurement
- Labelling
- Comparison to prior studies
- Structured reports (NLP)
- · Semantic error detection in reports
- Data mining
- Workflow, dashboards
- Performance improvement, outcomes analysis

© 2019 Marcia C. Javitt, M.D

WHA `ABOUT AI AUTOMATED " {ORMAL" REPORTS?

Normal MMGs never seen by docs?

- Focus attention on abnormals

Complexity of each remaining case is greater!!!
 Pay for cognitive difficulty ???

- AI Tools may add to work and time needed

© 2019 Marcia C. Javitt, M.D

ML in \ 'omen's Imaging

- Workflow
 - Scheduling, Prioritizing Worklists, Distribution of Labor
 Safety Screening (e.g.- MRI safety, iv injections)
- Quality Improvement
- Reduce acquisition time
- Improve scan technique, noise reduction, completeness
- Detect artifacts
- Automated Lesion Detection and Characterization: CADe, CADx
 S019MmratChint MD

CAD

- · CADe marks findings; CADx evaluates findings;
- Steps:
 - Preprocessing- image noise reduction, optimize contrast
 Segmentation
 - -ROI analysis (morphology, size, pixel values)
 - -Classification Algorithm (probability of true positive)
 - Highlight lesions reaching threshold

HIGH SENSITIVITY LOW SPECIFICITY

CAD LIMITATIONS

- By 2010, 74% MMGs read with CAD
 REF: Rao VM, et al, How widely is CAD used in screening and diagnostic mammography?, J Am Coll Radiol 2010; 7(10):802-805.
- More recalls, higher biopsy rate
 REF: Gilbert FJ, et al. Single reading with CAD for screening mammography. N Engl
 J Med 2009; 359(16):1675 1684.
- 20% longer reading time, False (+)s
 REF: Tchou PM, et al. Interpretation time of computer aided detection at screening mammography. Radiology 2010, 257(1): 40 46.
- CAD MUST CHANGE → ML CAD
 -TIME, WORKFLOW, COST, REVENUE

Chicago International Breast Course The Westin Chicago River North November 1-3, 2019

ML: MMG SOLUTIONS

- RISK Modeling & Screening
- · Reader Assistance
- · Second Reader?
- Cancer Detection & Characterization

© 2019 Marcia C. Javitt, M.D

BREAST DENSITY

- Automated
- DL ALGORITHM quantifies breast density
- NN trained to recognize density
- -41,479 digital screening MMGs in 27,684 patients
- Test set 8,677 MMGs in 5741 patients
- Clinical practice 10,763 MMGs vs 8 radiolo, sts
 Very good agreement (k = 0.85; 95% Ci 84, t 9)

REF: Lehman CD, Yala A, Shuster T, et al, Mammographic breast density as vent using deep learning: clinical implementation. Radiology 290(1): *?-58, 2019. Epub U 5, 2018. © 2019Marcia C. Iwit, MD

J PREDICTING B^f EAST CANCER?

- IBM's AI Model from Haifa IL (Maccabi, Assuta)
- 52,936 images from 13,234 women
- menarche age, hormonal status, br density, FH, meds, Sx, ...
- TRAINING DATA: 9,611 MAMMOGRAMS & EHRs
 Records available for at least one year prior
- · Validated in 1,055 patients
- Tested in 2,548
- RESULTS:

AI IDENTIFIED 34/71 (48%) FALSE (-) MMGs

REF: Akselrod-Ballin A, et al, Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammugrams. Radiology. 2019 Jun 18:182622. Epub AOP

. TRATEG. ES TO PAY FOR AI

- January 20. 1st JA approved AI algorithm
- < 1/4 Algorith. is have FDA 510k clearance
- Some AI Vendors may not submit 510k applications
 - Software = adjunct to radiologist readings
 Must be integrated into existing systems, PACS
 - Requires Validation by Vendor
- What is the Business Plan? Low CAD reimbursement.
- CAD \neq AI Throughput
- Liability?
- © 2019 Marcia C. Javitt, M.D

REGULATORY REQUIREMENTS

- Build, maintain, deploy, scale AI tools
- FDA accelerated clearance of AI tools in 2018 ->12 Medical AIs approved
- FDA intends to regulate digital health tools as part of a drug delivery type system
- FDA will regulate companies, not just products
- HOW WILL FDA REGULATE PRODUCTS THAT EVOLVE, LEARN AND IMPROVE? INCORPORATE NEW EVIDENCE?

FUTURE OF AI

- Interoperable cross-specialty DATA – DATA Mining on a Massive Scale
- Personalized Medicine
 - Preventative Medicine
 - Diagnosis
 - Prognosis
 - Tailored Treatment Selection
 - Surveillance
- Predictive Analytics: Px, RECIST

© 2019 Marcia C. Javitt, M

Chicago International Breast Course The Westin Chicago River North November 1-3, 2019

WORK PRODUCT OF FUTURE AI RADIOLOGISTS

- AI RADS = Data Scientists
- Astronauts driving digital platforms to new heights
- Infrastructure in Evolution
- Safety & Efficacy before Clinical Use
 CIO: Chief Info. Officer quality, saferry, effectiveness
 CDO: Chief Data Officer data quality 'z validation,
- training ML systems, compline e • COMMON STANDARDS → Inc., Prability & Integration of AI
- 2019 Marcia C. Javitt. M.D

ACR AI-LAB

- AI Democratization
- · No programming skills required
- Imaging database, ACR AI-LAB access
- Software tools, Imaging Algorithms → clinical p⁻
- Without programming language
- · Software and integration provided
- MGH, OSU, Lahey, Emory, UW, UCSt, 7&W

© 2019 Marcia C. Javitt, M.D

Doe: AI Have Predictive Value?

- Predictions are useless unless used to improve clinical outcome quick, safe, and effective
- Metrics
- Partnership
- Transparency
- Innovation
- TRUST

© 2019 Marcia C. Javitt, M.D