

	Risk Factors	Relative Risk	
	BRCA mutation	20	
	Lobular carcinoma in situ	8-10	
one of the strongest predictors!	Dense breast parenchyma	2-6	
	Previous benign blopsy	4-5	
	Geographical location	5	
	Cancer in the other breast	>4	
	Exposure to ionizing radiation	3	
	Age at 1st full pregnancy	3	
	Family history 1 st relative	>2	
	Age at menopause	2	
	Socioeconomic group	2	
	Taking exogenous hormones	1.2-2	
	Diet	1.5	
	Post-men opausal obesity	1,5	
	Alcohol consumption	1.3	

Perenet density and masking effect

Breast density and "Masking effect"					
Author	Journal	Total No. of cancers missed	No. of cancers missed due to density		
Bird, 1993	Radiology 184:613-617	320	77 (24%)		
Bae, 2014	Radiology 270;369-277	335	263 (78%		
lkeda, 2003	Radiology 226:494-503	172	18 (31%,		

Mamm Jraphic Density and the Risk and Jetection of Breast Cancer

			gauve ocreening	3
Mammographic Density	Case (N=124)	Control (N=124)	Odds Ratio	95% CI
< 10%	12	35	1.0	-
10 to <25%	22	29	2.1	(0.9, 5.2)
25 to <50%	33	29	3.6	(1.5, 8.7)
50 to <75%	32	23	5.6	(2.1, 15.3)
≥ 75%	25	8	17.8	(4.8, 65.9)
P value‡			<0.	001
Bowd NE et al NE IM 2007-2	156-227-36			

TE		case-control study	
bjective:	Bienniai scree	ning ages 50-74 years old	Dutch screening program 1975-2008
To asse	ess the effect of screening	on BC mortality in women wi	th dense and fatty breasts
Results:		Fatty breasts	Dense breasts
Results:	Sensitivity	Fatty breasts 75.7%	Dense breasts 57.8%

CDR= 3.7 per 1000 scre ICR was 0.33 and 0.47 p		
	Dense breasts	Non-dense breasts
Overall Sensitivity Mammography alone	61.5%	86.6%
Overall Sensitivity Mammography and US	81.3%	95.0%
Recall rate	13.1 per 1.000 screens	دىنى 10.5 per 1.000
Positive predictive value of biopsy	55.5% (95% Cl 50.6%- 60.3%)	43.3 (95% Cl 4%-47.3%)
	ves CDR in screening of wom	

		Result	ts of HH	IUS stud	lies	
		HHUS		tor depend		
Author	US examinations	US only detected cancers	Invasive cancers	Mean size, mm	CDR per 1000	Node negative %
Gordon 1995	12,706	44	44	11	2.4	N/R
Buchberger 2000	8103	35	35	9.1	3.9	33/35
Kolb 2002	a66 wome	37	36	9.9	2.7	25/28(89.3)
Corsetti 2008	8103 363,866 wome 363,9157	37	36	N/R	4	253/282 (89.7)
Berg 2012	7473	32	30	10	4.2	29/30 (96.7)
Bae 2014	106829	282	282	N/R	3.1	253/282 (89.7)
Weigert 2017	10810	25	25	10.9	2.8	20/25 (80.0)
Vourtsis A., Berg W.	A, Eur Radiol. (2018) 28	3:592-601.				6

Author, Year	screens with Cancer Outcome	Number of Screens	CDR per 1000 screens	Recalls due to US (% of Screens)	biopsies prompted only by US (%)	N Invasive / Total (%)	N No Negativi
OVERALL Physician- Performed HHUS (23 studies)	738	361,562	2.0	12,898/169,258 (7.62)	357/3313 (10.8)	631/719 (87.8)	497/5 (89.)
OVERALL Technologist performed HHUS (7 studies)	144	64,018	2.7	4420/58,584 (7.54)	78/864 <mark>(9.0)</mark>	124/144 (86.1)	102/1 <mark>(82</mark> .)
OVERALL AUS (5 studies)	69	27,163	2.5	2683/25,277 (10.6)	53/626 <mark>(8.5)</mark>	63/69 <mark>(91.9)</mark>	36/40 (8
Kelly, 2010	23	6425	3.6	557 (8.7)	23/75 (30.7)	22/23 (95.7)	NR
Choi, 2014	7	1866	3.8	48 (2.6)	NR	4/7 (57.1)	4/4 (10
Brem, 2015	30	15318	2.0	2063 (13.5)	30/551 (5.4)	28/30 (93.3)	25/27 (9
Wilczek, 2016	4	1668	2.4	15 (0.9)	NR	4/4 (100)	2/4 (5
Vourtsis, 2018	5	1886	2.7	NR	NR	5/5 (100)	5/5 (10

AUS has equivalent performance in CDR to HHUS

	sult ^י	s of Sup	men	tal Screer	ning wit	h AUS	
Author, Year	No u screens with cancer outcome	Number of reens	DR per 1000 screens	Net added recalls due to US % of screens	PPV3 of biopsies prompted only by US (%)	N invasive Total (%)	N Node Negative (%)
Kelly, 2010	23	6425	3.6	557 (8.7)	23/75 (30.7)	22/23 (95.7)	NR
Choi, 2014	7	1866	3.8	48 (2.6)	NR	4/7 (57.1)	4.4 (100)
Brem, 2015	30	15318	2	2063 (13.5)	30/551 (5.4)	28/30 (93.3)	25/27 (92.6)
Wilczek, 2016	4	1668	2.4	15 (0.9)	NR	4/4 (100)	2/4 (50)
Vourtsis, 2018	5	1886	2.7	NR	NR	5/5 (100)	5/5 (100)
OVERALL AUS	69	27,163	2.5	2683/25277 (10.6)	53/626 (8.5)	63/69 (91.3)	36/40 (90.0)
Berg WA. Vourts	is A. Journal of	Breast Imaging. A	ccepted for publ	ication.			G

Technical advancements of AUS

- 1. Advantages of AUS vs HHUS
- Operator independent
- Large field of view / multiplanar / tomographic thin slices
 Uncoupling between the operator and the interpreter –
- Saving physician's time
- Less training
- 2. High reproducibility of images
- 3. Batch reading and double reading
- 4. Virtual review of volumetric data
- Coronal plane: provides information on the extent of the disease and demonstrates the "retraction phenomenon sign"

The impact of MPR images compared to the transverse plane

- AUC from 0.82 (transverse reading solely) to 0.87 (transverse + MPR).
- Downgrade of 3-18% of the biopsied benign lesions to BI-RADS 2 after MPR evaluation.
- Retraction pattern visualized in the coronal plane in all infiltrating carcinomas.
 MPR provided specificity 100% and sensitivity 80% for detection of breast cancer.
- Inter-reader agreement of the BI-RADS final assessment it improved from 0.367 to 0.536 after MPRs.
- Retraction pattern can be completely absent in fast g wing-carcinomas (triplenegative.

 1.
 Van Zelsı
 et al Acad Radiol 2016.

 2.
 Van Zheng J
 rt al EJR 2017.

Detectabili of breast lesions in AUS vs. HHUS					
Stu	mber of patients	Number of lesions	Positive predictive value (%)	3D AUS detection rate (%)	HHUS detection rate (%)
Kim et al. 2013	38	66	NR	84.8 to 86.3 across three radiologists	93.9
Lin et al. 2012	81	95	NR	100	100
Wang et al. 2012a	213	239	73	99.6	98.7
Wang et al. 2012b	155	165	94.2	97.6	95.8
Xiao et al. 2015	300	417	NR	100	78.2
Zhang et al. 2012	81	99	NR	89.9 to 100 across the two examiners	60.6 to 85.9 across the two examiners
Vourteis A Diago I	nten/Imaging 20	10-100/10\-570	502		

2384

Vourtsis A. Diagn Interv Imaging 2019;100(10):579-592
 Vourtsis A. Berg WA, Eur Radiol. 2018;28:592-601.

HHUS

91.0%

2169/ 2384

	malig	nant versus	benign lesi	ons with AU	S
Study	Number of patients	Sensitivity (%)	Specificity (%)	Positive Predictive Value (%)	Comparative evaluation versus HHUS
Kim 2013a	38	88.0 to 96.0, across three radiologists	81.3 to 93.8, across three radiologists	NR	No significant differences
Kotsianos-Hermle 2009	97	96.5	92.3	NR	No significant differences
Lin 2012	81	100	95	NR	3D ABUS had a highe diagnostic accuracy than HHUS for breast neoplasms, but no statistical tests were presented for this comparison
Wang 2012a	213	95.3	80.5	73	No significant differences
Wang 2012b	155	96.1	91.9	95.2	No significant differences

			7	
Accuracy	1ifferent [;]	ing maligna	int from beni	gn lesions
No of studies	No ot _ers		Detectability Rate	
No or studies	1001 2013		Detectability Rate	
		AUS	94.3%	1325/ 1405
20	1405			1311/
		HHUS	93.3%	1405

Tra

Meta-analysis of the diagnostic performance of the ABVS and HHUS					
Technology	Sensitivity (95% CI)	Specificity (95% CI)			
ABVS	<mark>90.8%</mark> (88.3%-93.0%)	<mark>82.2%</mark> (80.0%-84.2%)			
HHUS	<mark>90.6%</mark> 88.1%-92.8%	<mark>81.0%</mark> 78.8%-83.0%			

Stud			e between-observer agreen RADS categorization	nent
Study	Number of patients	Number of examiners	BI-RADS categories used in the study	Kappa for the between-observer agreement in 3D AUS
Golatta 2013	42	6	Two categories: BI-RADS 1-2; 4-5	0.52
Kim. 2013a	38	3	Five categories: 1; 2; 3; 4; 5	0.57
Shin 2011	55	5	Six categories: BI-RADS 1-2; 3; 4A; 4B; 4C; 5	0.63
Skaane 2015	90	5	Five categories: BI-RADS 1; 2; 3; 4; 5	0.07-0.34, across participating radiologists
Vourtsis 2018	1886	2	Five categories: BI-RADS 1; 2; 3; 4; 5	0.99
Wang 2012b	155	2	Two categories: BI-RADS 1-3; 4-5	0.44
Wojcinski 2013	100	2	Two categories: BI-RADS 1/2; 0/3/4/5	0.36
Zhang 2012b	208	2	Three categories: BI-RADS 3; 4; 5	0.70
Vourtsis A. Diagn Interv	Imaging 2019;1	00(10):579-592		(J

Utilization of AUS as a second look US after MRI

Pre-operative staging

Interpretation of (ABUS) with and without knowled mammography: a reader performance study dge of

Per Skaane et al. Acta Radiol. 6 (4):404-412. Purpose: To compare reader performance and inter-observer variation of ABUS alone and in combination with mammography.

rospective study. One hundred and fourteen breasts in 90 women examined by digitan mmography and ABUS were interpreted by five radiologists using BI-RADS

Results

There was a considerable inter-observer variability for ABUS alone ε combined reading, respectively.

Observer agreement was higher and all radiologists improved dia using combined ABUS and mammography interpretation.

AUS had significantly higher accuracy than those determined by HHUS				
	Volumetric I	measurement		
	AUS	HHUS	Comments	
Tozaki M, et al 2010	98% accurate with a length deviation of <2 cm	Not reported	Promising results in the extent of cancer assessment	
Hu C, et al 2016	Higher accuracy	Lower accuracy	Measurement of largest tumor diameter, tumor volume and tumor surface area	
Li N, et al 2013	64%, 15% and 21%	42%, 15% and 42%	AUS performed better than HHUS	
Huang A, et al 2016	2.5±0.8 cm	2.0±0.9 cm	AUS more accurate than HHUS	

What are the limitations of AUS vs HHUS?

)		N.	
oupling between the lar	A A		4 /11 k

AUS HHUS Interpretation of shadowing Utilize the integrated software tools such as the rotation tool Real-time scanning – till the probe Sensitivity in the retroareolar, posterior and perpheral breast ? Performs better? Axilla Not always included Included Performance in women with surgery, scaring, and implants ? + Final assessment HHUS is required for final assessment Final assessment can be made immediately Vascularization Not available Available	Lir	Limitations of AUS vs HHUS			
Interpretation of shadowing tools such as the rotation tool till the probe Sensitivity in the retroareolar, posterior and perpheral breast ? Performs better? Axilla Not always included Included Performance in women with surgery, scaring, and implants ? + Final assessment HHUS is required for final assessment Final assessment can be made immediately Vascularization Not available Available		AUS	HHUS		
posterior and peripheral breast ? Performs better ? Axilla Not always included Included Performance in women with surgery, scarring, and implants ? + Final assessment HHUS is required for final assessment Final assessment can be made immediately Vascularization Not available Available	Interpretation of shadowing				
Performance in women with surgery, scarring, and implants ? + Final assessment HHUS is required for final assessment Final assessment assessment Vascularization Not available Available		?	Performs better?		
surgery, scarring, and implants + Final assessment HHUS is required for final assessment Final assessment assessment Vascularization Not available Available	Axilla	Not always included	Included		
Final assessment assessment immediately Vascularization Not available Available		?	+		
	Final assessment				
3 D US Elastography Not available Available	Vascularization	Not available	Available		
	3 D US Elastography	Not available	Available		
Guided biopsy technique Not available Available Available	Guided biopsy technique	Not evenable	Available		

Bright Future!	Why is AUS	Best?		
Technological Advances				
HHU	\$	AUS		
Operator variability		Non-operator dependent		
Inconsistent scanning technique		Standardized – reproducible - consistent		
Small FOV		Large FOV		
Physician performed in Europe		Performed by technologists		
Images captured by technologists		Virtual reading by radiologists		
> training		< training		

 Bright Future!
 Why is AUS Best? Clinical aspects of AUS

 AUS has equivalent performance in CDR compared to HHUS.

 Similar performance in diagnostic accuracy. AUS outperformed as a second look US after MRI. Higher accuracy in the extend of the disease.

 Standardized BI-RADS lesion reporting and characterization.

 Batch reading and double reading is feasible.

 Ability to apply different applications—sc...

 Sic, second look after MRI, preoperative assessment.

Thank you!